Silicon is a gray , brittle, tetravalent, nonmetallic element occurring abundantly in nature. Next to Oxygen it is the chief elementary constituent of the earth's crust. The symbol for Silicon is Si it's atomic number is 14 and it's atomic mass is 28.086. This element is almost always found in various compounds both in nature and in industry, in nature you find it in quartz, jasper, agate, flint, common beach sand, sandstone and many other common rocks and materials. In industry we find it as the main component in the most common building materials such as cement, bricks, glass and others. It is also used in many polymers such as Silicone rubber as well as thousands of other uses including heat resisting resins, lubricants, water resistant films etc., etc.Silicon as a Semiconductor: Perhaps one of the most important uses for Silicon in the second half of the twentieth century and beyond, is it's ability to conduct electricity in a very controlled manner. Relative to how many impurities or dopants (Boron, Phosphorus, Arsenic, Antimony, etc.) are placed into it's crystal structure. Simply put, the more dopant in the crystal lattice of Silicon the more it will conduct electricity. In theory pure monocrystalline Silicon will not conduct electricity very well at all, the beauty of Silicon is that it can be made to take on dopants precisely and after this doping it will normally remain stable under many adverse conditions. Thus making the Silicon wafer an ideal Palette or surface for the construction of today's and tomorrow's most advanced semiconductor devices. The making of a Silicon wafer: With all this talk of sand and glass it may begin to over simplify a very complex process. The process of growing Ingots of monocrystalline Silicon with a uniform and controlled dopant and oxygen content, and then to take these Ingots and grind, slice and polish them into the final Prime wafers mostly free of defects that major Fab's will use to build advanced semiconductor devices on, is nothing short of a monumental task. At Process Specialties we don't think that The Silicon Manufacturers will ever get enough credit for the work and the achievements they have made in helping to forward this industry to the place it is today. |
Raw Material: Silicon is the raw material of course, the crucible at the right is filled with pure |
...Crystal Pulling is the next step in the Manufacturing of a Silicon wafer. In this process the Polysilicon chunks or granules are loaded into the Quartz crucible of the Crystal pulling furnace along with a small amount of either Boron, Phosphorus, Arsenic or Antimony dopant. The Polysilicon is |
At the right is an actual picture of a "Seed" and Ingot inside of a crystal pulling furnace. |
. |
Edge grinding or rounding is an important part of the wafer manufacturing process, it is normally done before or after lapping, this rounding of the edge of the wafer is very important! If it is not done the wafers will be more susceptible to breakage in the remaining steps of the wafer manufacturing process and the device manufacturing processes to come. If you look at the edge of a finished wafer you will see the edge rounding even in the notch area of 200mm and 300mm wafers. On the best Prime wafers the edges are also highly polished, this can improve cleaning results on wafers and reduce breakage up to 400%. Process Specialties has seen a notable yield differential between poorly and perfectly edge rounded material. |
. |
Final Cleaning: The next step in the process after polishing is a rather intense regimen of cleans and scrubs to remove trace metals, residues and particles from the surface(s) of the finished Silicon wafers. Normally most wafer manufacturers use a final cleaning method developed by RCA in the 1970's the first part of this clean is called SC1 and consists of Ammonium Hydroxide followed by a dilute Hydrofluoric acid clean followed by a DI water Rinse. Next the SC2 clean which consists of Hydrochloric acid and Hydrogen peroxide followed by a DI water rinse. Many companies modify these cleans to make them even more effective. After all this cleaning and rinsing the finished wafers will now go through a front and backside scrub to remove even the smallest particles. |
. |
. |
. Epitaxy: The growth of a single crystal Silicon layer on the front side of the wafer (polished side) is something Silicon manufactures do all the time. This is a very difficult process and is prone to many defects. It is normally part of the Silicon manufacturing process, but it is also done at the IC manufacturing facilities. For this reason we will discuss this CVD film in more detail in another article. |
If you read your way down this page, you know a lot more about Silicon wafer manufacturing than most people that work in the Silicon Valley! If you scrolled down the page looking at the pictures maybe you're interested enough now to go back up to the top of the page and read your way down this time, and you might learn something too! |
.If you would like more information on Silicon wafer processing, talk to a Silicon manufacturer or give one of our process engineers a call (800) 533-8820 or e-mail us at Process Specialties Inc. |
© 1997 Process Specialties Inc. |
Wednesday, February 15, 2017
Silicon Information
Silicon Information
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment